Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.

Identifieur interne : 000A03 ( Main/Exploration ); précédent : 000A02; suivant : 000A04

Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.

Auteurs : Scott W. Aesif [États-Unis] ; Yvonne M W. Janssen-Heininger ; Niki L. Reynaert

Source :

RBID : pubmed:20609917

Descripteurs français

English descriptors

Abstract

The oxidation of protein cysteine residues represents significant posttranslational modifications that impact a wide variety of signal transduction cascades and diverse biological processes. Oxidation of cysteines occurs through reactions with reactive oxygen as well as nitrogen species. These oxidative events can lead to irreversible modifications, such as the formation of sulfonic acids, or manifest as reversible modifications such as the conjugation of glutathione with the cysteine moiety, a process termed S-glutathionylation (also referred to as S-glutathiolation, or protein mixed disulfides). Similarly, S-nitrosothiols can also react with the thiol group in a process known as S-nitrosylation (or S-nitrosation). It is the latter two events that have recently come to the forefront of cellular biology through their ability to reversibly impact numerous cellular processes. Herein we describe two protocols for the detection of S-glutathionylated or S-nitrosylated proteins in situ. The protocol for the detection of S-glutathionylated proteins relies on the catalytic specificity of glutaredoxin-1 for the reduction of S-glutathionylated proteins. The protocol for the detection of S-nitrosylated proteins represents a modification of the previously described biotin switch protocol, which relies on ascorbate in the presence of chelators to decompose S-nitrosylated proteins. These techniques can be applied in situ to elucidate which compartments in tissues are affected in diseased states whose underlying pathologies are thought to represent a redox imbalance.

DOI: 10.1016/S0076-6879(10)74017-9
PubMed: 20609917
PubMed Central: PMC3113509


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.</title>
<author>
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
</author>
<author>
<name sortKey="Reynaert, Niki L" sort="Reynaert, Niki L" uniqKey="Reynaert N" first="Niki L" last="Reynaert">Niki L. Reynaert</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20609917</idno>
<idno type="pmid">20609917</idno>
<idno type="doi">10.1016/S0076-6879(10)74017-9</idno>
<idno type="pmc">PMC3113509</idno>
<idno type="wicri:Area/Main/Corpus">000993</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000993</idno>
<idno type="wicri:Area/Main/Curation">000993</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000993</idno>
<idno type="wicri:Area/Main/Exploration">000993</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.</title>
<author>
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
</author>
<author>
<name sortKey="Reynaert, Niki L" sort="Reynaert, Niki L" uniqKey="Reynaert N" first="Niki L" last="Reynaert">Niki L. Reynaert</name>
</author>
</analytic>
<series>
<title level="j">Methods in enzymology</title>
<idno type="eISSN">1557-7988</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glutathione (MeSH)</term>
<term>Histocytological Preparation Techniques (MeSH)</term>
<term>Lung (cytology)</term>
<term>S-Nitrosoglutathione (analysis)</term>
<term>S-Nitrosoglutathione (chemistry)</term>
<term>S-Nitrosothiols (analysis)</term>
<term>S-Nitrosothiols (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Glutathion (MeSH)</term>
<term>Poumon (cytologie)</term>
<term>S-Nitroso-glutathion (analyse)</term>
<term>S-Nitroso-glutathion (composition chimique)</term>
<term>S-Nitrosothiols (analyse)</term>
<term>S-Nitrosothiols (composition chimique)</term>
<term>Techniques de préparation histocytologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>S-Nitrosoglutathione</term>
<term>S-Nitrosothiols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>S-Nitrosoglutathione</term>
<term>S-Nitrosothiols</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>S-Nitroso-glutathion</term>
<term>S-Nitrosothiols</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>S-Nitroso-glutathion</term>
<term>S-Nitrosothiols</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Histocytological Preparation Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Glutathion</term>
<term>Techniques de préparation histocytologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The oxidation of protein cysteine residues represents significant posttranslational modifications that impact a wide variety of signal transduction cascades and diverse biological processes. Oxidation of cysteines occurs through reactions with reactive oxygen as well as nitrogen species. These oxidative events can lead to irreversible modifications, such as the formation of sulfonic acids, or manifest as reversible modifications such as the conjugation of glutathione with the cysteine moiety, a process termed S-glutathionylation (also referred to as S-glutathiolation, or protein mixed disulfides). Similarly, S-nitrosothiols can also react with the thiol group in a process known as S-nitrosylation (or S-nitrosation). It is the latter two events that have recently come to the forefront of cellular biology through their ability to reversibly impact numerous cellular processes. Herein we describe two protocols for the detection of S-glutathionylated or S-nitrosylated proteins in situ. The protocol for the detection of S-glutathionylated proteins relies on the catalytic specificity of glutaredoxin-1 for the reduction of S-glutathionylated proteins. The protocol for the detection of S-nitrosylated proteins represents a modification of the previously described biotin switch protocol, which relies on ascorbate in the presence of chelators to decompose S-nitrosylated proteins. These techniques can be applied in situ to elucidate which compartments in tissues are affected in diseased states whose underlying pathologies are thought to represent a redox imbalance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20609917</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7988</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>474</Volume>
<PubDate>
<Year>2010</Year>
</PubDate>
</JournalIssue>
<Title>Methods in enzymology</Title>
<ISOAbbreviation>Methods Enzymol</ISOAbbreviation>
</Journal>
<ArticleTitle>Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.</ArticleTitle>
<Pagination>
<MedlinePgn>289-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/S0076-6879(10)74017-9</ELocationID>
<Abstract>
<AbstractText>The oxidation of protein cysteine residues represents significant posttranslational modifications that impact a wide variety of signal transduction cascades and diverse biological processes. Oxidation of cysteines occurs through reactions with reactive oxygen as well as nitrogen species. These oxidative events can lead to irreversible modifications, such as the formation of sulfonic acids, or manifest as reversible modifications such as the conjugation of glutathione with the cysteine moiety, a process termed S-glutathionylation (also referred to as S-glutathiolation, or protein mixed disulfides). Similarly, S-nitrosothiols can also react with the thiol group in a process known as S-nitrosylation (or S-nitrosation). It is the latter two events that have recently come to the forefront of cellular biology through their ability to reversibly impact numerous cellular processes. Herein we describe two protocols for the detection of S-glutathionylated or S-nitrosylated proteins in situ. The protocol for the detection of S-glutathionylated proteins relies on the catalytic specificity of glutaredoxin-1 for the reduction of S-glutathionylated proteins. The protocol for the detection of S-nitrosylated proteins represents a modification of the previously described biotin switch protocol, which relies on ascorbate in the presence of chelators to decompose S-nitrosylated proteins. These techniques can be applied in situ to elucidate which compartments in tissues are affected in diseased states whose underlying pathologies are thought to represent a redox imbalance.</AbstractText>
<CopyrightInformation>Copyright (c) 2010 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aesif</LastName>
<ForeName>Scott W</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Janssen-Heininger</LastName>
<ForeName>Yvonne M W</ForeName>
<Initials>YM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reynaert</LastName>
<ForeName>Niki L</ForeName>
<Initials>NL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL060014</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL060014-13</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL079331</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Enzymol</MedlineTA>
<NlmUniqueID>0212271</NlmUniqueID>
<ISSNLinking>0076-6879</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026403">S-Nitrosothiols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57564-91-7</RegistryNumber>
<NameOfSubstance UI="D026422">S-Nitrosoglutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="Y">Glutathione</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016591" MajorTopicYN="Y">Histocytological Preparation Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026422" MajorTopicYN="N">S-Nitrosoglutathione</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026403" MajorTopicYN="N">S-Nitrosothiols</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20609917</ArticleId>
<ArticleId IdType="pii">S0076-6879(10)74017-9</ArticleId>
<ArticleId IdType="doi">10.1016/S0076-6879(10)74017-9</ArticleId>
<ArticleId IdType="pmc">PMC3113509</ArticleId>
<ArticleId IdType="mid">NIHMS291027</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Feb 1;362(1):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9917330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Oct;10(10):721-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19738628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nitric Oxide. 2004 Nov;11(3):216-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15566968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Feb;6(2):150-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15688001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Nov 1;383(1):60-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11097177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Sep 21;106(6):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2001 Jun 12;2001(86):pl1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Feb;9(2):387-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 22;277(12):9637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11796706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 3;109(3):383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2003 Oct 13;42(39):4742-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2003 Dec 7;1(23):4317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Jan 25;253(2):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">412850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2005 Jun;39(6):573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16036334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Mar;1760(3):380-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16515838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Sep 15;43(6):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):445-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Jul 1;45(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Jan 15;46(2):119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18977293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jan 26;184(2):241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2009 Jul;175(1):36-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 1999 Jun 1;68(2-3):397-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10424449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Vermont</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
<name sortKey="Reynaert, Niki L" sort="Reynaert, Niki L" uniqKey="Reynaert N" first="Niki L" last="Reynaert">Niki L. Reynaert</name>
</noCountry>
<country name="États-Unis">
<region name="Vermont">
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20609917
   |texte=   Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20609917" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020